Keynote Speaker

Prof. Maryline Chetto, University of Nantes, France

Maryline Chetto is currently a full professor in computer engineering with Nantes Université, France and researcher with CNRS. She received the degree of Docteur de 3ème cycle in control engineering and the degree of Habilitée à Diriger des Recherches in Computer Science from the University of Nantes, France, in 1984 and 1993, respectively. From 1984 to 1985, she held the position of Assistant professor of Computer Science at the University of Rennes, while her research was with the Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Rennes. In 1986, she returned to Nantes and has been from 2002 a full professor with the University of Nantes. She is conducting her research at Laboratoire des Sciences du Numérique de Nantes (LS2N, UMR CNRS n° 6004) in the Real Time System group.Her research has been focused on development and formal validation of solutions regarding Scheduling, Fault-tolerance and Dynamic Power Management in real time embedded applications. Her current research is specifically targeting real-time scheduling issues in energy neutral devices. She has more than 170 papers published in international journals and conferences. She was the editor of the books Real-time Systems Scheduling (Elsevier, 2014) with volume 1 Fundamentals and Volume 2 Focusses. She was the co-author of the book Energy Autonomy of real-time systems (Elsevier, 2016). She has been general co-chair of the 2020 IEEE International Conference on Green Computing and Communications (GreenCom-2020). From 2011 to 2023, she has been member of the French National Council for Universities.

Title: Power Management for Autonomous Cyber Physical Systems with Real-time Considerations

Abstract: A growing number of applications (e.g. medical, automotive) involve many wireless devices that may be deployed in wide areas and possibly unattainable places. Such systems should be designed to function perpetually without any human intervention to charge or replace batteries because either costly or impractical. As a consequence, energy harvesting technology has been an area of rapid development during the last decade.

Energy harvesting is a technology that allows to capture unused ambient energy. It is converted into electrical energy which is used immediately or later through a storage unit for powering small devices such as sensors which, in addition to energy limitations, have to cope with real-time constraints. Energy neutrality is the central requirement of autonomous real-time computing systems that should consume no more energy than harvested.

Unfortunately, most of environmental energy sources are fluctuating and not controllable. It means that a stable power supply cannot be relied upon that makes challenging the issue of compliance with hard real-time constraints. Specific power management and scheduling solutions have to be conceived in order to prevent energy starvation and guarantee real-time responsiveness. Task scheduling should take into account not only the timing parameters of the deadline constrained tasks such as worst-case execution times but also energy consumptions, profile of the energy source and capacity of the energy storage unit. This keynote addresses state of the art as well as our findings in real-time scheduling and processor activity management for wireless energy harvesting devices.